

Saturated Steam Table				
Steam Pressure PSIG	Temp. ${ }^{\circ} \mathrm{F}$	Sensible Heat BTUH/lb h_{f}	Latent Heat BTUH/lb h_{fg}	Total Heat BTUH/lb h_{g}
0	212	180	971	1151
10	239	207	952	1159
25	266	236	934	1170
50	297	267	912	1179
75	320	290	896	1186
100	338	309	881	1190
125	353	325	868	1193
150	365	339	858	1197
200	387	362	838	1200
250	406	381	821	1202
300	422	399	805	1204
400	448	428	778	1206
500	470	453	752	1205
600	489	475	729	1204

> Steam
> $\mathrm{C}_{\mathrm{v}}=\mathrm{lbs} . / \mathrm{hr}$ $2.1\left[\left(P_{2}-P_{1}\right)\left(P_{1}+P_{2}\right)\right]^{1 / 2}$
> Liquid
> $\mathrm{C}_{\mathrm{v}}=\mathrm{Q}\left[\mathrm{S} /\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)\right]^{1 / 2}$
> Gas
> $\begin{aligned} & \mathrm{C}_{\mathrm{v}}=\mathrm{Q}_{\mathrm{a}}\left[\mathrm{G}\left(\mathrm{T}_{\mathrm{a}}+460\right)\right]^{1 / 2} \\ & 1360\left[\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)\right]^{1 / 2}\end{aligned}$
$\mathrm{P}_{1}=$ Inlet pressure PSIA
$\mathrm{P}_{2}=$ Outlet pressure PSIA
$\mathrm{Q}=$ Gallons per minute
$\mathrm{Q}_{\mathrm{a}}=$ Gas flow (SCFH)
$\mathrm{C}_{\mathrm{v}}=$ GPM at 1 PSI $d P$
$\mathrm{S}=$ Specific gravity of fluid
$\mathrm{G}=$ Specific gravity of gas
$\mathrm{T}_{\mathrm{a}}=$ Gas temperature $\left({ }^{\circ} \mathrm{F}\right)$
$\mathrm{t}=$ Time in hours
$\mathrm{C}_{\mathrm{p}}=$ Specific heat of liquid
$\mathrm{D}=$ Density in lbs/gallon
$\mathrm{T}_{2}-\mathrm{T}_{1}=$ Temperature change in ${ }^{\circ} \mathrm{F}$ $\mathrm{h}_{\mathrm{fg}}=$ Latent heat of steam

Steam tracing:
Use $50 \mathrm{lb} / \mathrm{hr} / 100 \mathrm{ft}$ of tracer
Heating water with steam:
$\mathrm{lbs} / \mathrm{hr}=(\mathrm{GPM} / 2) \cdot\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$ or $(\mathrm{GPM}) \cdot(500) \cdot\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) / \mathrm{h}_{\mathrm{fg}}$
Heating oil with steam:
$\mathrm{lbs} / \mathrm{hr}=(\mathrm{GPM} / 4) \cdot\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
Heating air with steam:
$\mathrm{lbs} / \mathrm{hr}=(\mathrm{CFM} / 900) \cdot\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$

Steam Demand
Sizing

Heating liquids in steam heat exchangers:
$\mathrm{lbs} / \mathrm{hr}=(\mathrm{GPM}) \cdot(60) \cdot \mathrm{C}_{\mathrm{p}} \cdot \mathrm{D} \cdot\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) / \mathrm{h}_{\mathrm{fg}}$
Heating liquids in steam jacketed kettles:
$\mathrm{lbs} / \mathrm{hr}=($ Gallons $) \cdot \mathrm{S} \cdot \mathrm{C}_{\mathrm{p}} \cdot \mathrm{D} \cdot\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) /\left(\mathrm{h}_{\mathrm{fg}} \cdot \mathrm{t}\right)$

Common Conversions

Specific gravity of air $\mathrm{G}=1$
US gallon of water $=8.33 \mathrm{lbs}$.
1 cubic foot of water $=7.48$ gallons
Air specific volume $=1 /$ density $=13.1 \mathrm{ft}^{3} / \mathrm{lb}$
G of any gas = density of gas/0.076
1 pound of steam = 1 pound of condensate
$1 \mathrm{HP}=42.44 \mathrm{BTU}$ per minute
$1 \mathrm{BTUH}=12,000$ tons of refrigeration
$1 \mathrm{GPM}=8.0208$ cubic feet per hour

Common Conversions

Specific gravity of water $=1$

$1 \mathrm{ft}^{3}$ of water = $62.34 \mathrm{lbs} @$ std. condition 1 cubic foot of air $=0.076 \mathrm{lbs}$.
Air molecular weight $\mathrm{M}=29$
G of any gas = molecular wt. of gas/29
1 kilowatt-hr $=3,413$ BTU
1 pound of water $=0.1198$ gallons
1 inch of mercury $=0.4912 \mathrm{psi}$
1 in of water $=0.03613 \mathrm{psi}$

Flow conversion of gas

$$
\mathrm{SCFH}=\frac{\mathrm{Lbs} / \mathrm{hr}}{\text { Density }} \quad \mathrm{SCFH}=\frac{\mathrm{Lbs} / \mathrm{hr} \cdot 379}{\mathrm{M}}
$$

$$
\mathrm{K}_{\mathrm{v}}=\mathrm{C}_{\mathrm{v}} \cdot 0.862
$$

$$
\mathrm{C}_{\mathrm{v}}=\mathrm{K}_{\mathrm{v}} / 0.862
$$

$\mathrm{SCFH}=\frac{\mathrm{Lbs} / \mathrm{hr} \cdot 13.1}{\mathrm{G}} \quad \mathrm{GPM}=\frac{\mathrm{Lbs} / \mathrm{hr}}{500 \cdot \mathrm{G}}$

12040-K W. Ferrick St. Milwaukee, WI 53226 (414) 358-4400 voice (414) 358-4404 fax

